HOQ-Driven HLOD Refinement. Using hardware occlusion queries information to drive hierarchical level-of-detail refinement HOQ-Driven HLOD Refinement. Using hardware occlusion queries information to drive hierarchical level-of-detail refinement In order to achieve interactive rendering of complex models comprising several millions of polygons, the amount of processed data has to be substantially reduced. Two of the most common approaches, orthogonal between each other, to accomplishing this task are: level-of-detail and occlusion culling. This thesis mainly aims at combining these two approaches. A novel error metric is presented which takes visibility information gathered from Hardware Occlusion Queries (HOQs), as an integral part of refining a Hierarchical Level-Of-Detail (HLOD) model. A novel traversal algorithm for HLOD refinement is also presented for taking full advantage of the introduced HOQ-based error metric. The algorithm minimises CPU stalls and GPU starvation by predicting HLOD refinement conditions using spatio-temporal coherence of visibility. Some properties of our approach involve improved performance having the same visual quality. Our error metric supports both polygon-based and point-based HLODs, ensuring full use of HOQ results. Our traversal algorithm makes full use of the spatial and temporal coherency inherent in hierarchical representations. Our approach can be straightforwardly implemented. Книга по Требованию 978-3-6392-3380-3
3171 руб.
Russian
Каталог товаров

HOQ-Driven HLOD Refinement. Using hardware occlusion queries information to drive hierarchical level-of-detail refinement

Временно отсутствует
?
  • Описание
  • Характеристики
  • Отзывы о товаре
  • Отзывы ReadRate
In order to achieve interactive rendering of complex models comprising several millions of polygons, the amount of processed data has to be substantially reduced. Two of the most common approaches, orthogonal between each other, to accomplishing this task are: level-of-detail and occlusion culling. This thesis mainly aims at combining these two approaches. A novel error metric is presented which takes visibility information gathered from Hardware Occlusion Queries (HOQs), as an integral part of refining a Hierarchical Level-Of-Detail (HLOD) model. A novel traversal algorithm for HLOD refinement is also presented for taking full advantage of the introduced HOQ-based error metric. The algorithm minimises CPU stalls and GPU starvation by predicting HLOD refinement conditions using spatio-temporal coherence of visibility. Some properties of our approach involve improved performance having the same visual quality. Our error metric supports both polygon-based and point-based HLODs, ensuring full use of HOQ results. Our traversal algorithm makes full use of the spatial and temporal coherency inherent in hierarchical representations. Our approach can be straightforwardly implemented.
Бумага:   Офсет
Масса:   93 г
Размеры:   148x 210x 3 мм
Отзывы
Найти пункт
 Выбрать станцию:
жирным выделены станции, где есть пункты самовывоза
Выбрать пункт:
Поиск по названию улиц:
Подписка 
Введите Reader's код или e-mail
Периодичность
При каждом поступлении товара
Не чаще 1 раза в неделю
Не чаще 1 раза в месяц
Мы перезвоним

Возникли сложности с дозвоном? Оформите заявку, и в течение часа мы перезвоним Вам сами!

Captcha
Обновить
Сообщение об ошибке

Обрамите звездочками (*) место ошибки или опишите саму ошибку.

Скриншот ошибки:

Введите код:*

Captcha
Обновить